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We consider the parallel flow of two immiscible fluids in a Hele-Shaw cell. The 
evolution of disturbances on the fluid interfaces is studied both theoretically and 
experimentally in the large-capillary-number limit. It is shown that such interfaces 
support wave motion, the amplitude of which for long waves is governed by a set of 
KdV and Airy equations. The waves are dispersive provided that the fluids have 
unequal viscosities and that the space occupied by the inner fluid does not pertain 
to the Saffman-Taylor conditions (symmetric interfaces with half-width spacing). 
Experiments conducted in a long and narrow Hele-Shaw cell appear to validate the 
theory in both the symmetric and the non-symmetric cases. 

1. Introduction 
During the past several years the flow of immiscible fluids in Hele-Shaw cells and 

porous media has been investigated extensively. Of particular interest to  most 
studies has been frontal displacement, specifically viscous fingering instabilities and 
finger growth. This can be readily understood in vicw of the many interesting 
theoretical and practical problems associated with such fronts. For Hele-Shaw cells, 
we mention the selection problems and the singular perturbation associated with the 
high-capillary-number limit (Bensimon et al. 1986; Combescot et al. 1986), and the 
relation of viscous fingers to crystal growth (Pelc6 1988) and flame front dynamics 
(Zel'dovich et al. 1980). In  porous media, unstable frontal displacement has been 
highlighted with the use of diffusion-limited-aggregation (Witten & Sanders 1981) 
and other probabilistic growth models (King 1987). Issues of capillarity, hetero- 
genei ty, randomness and spatial correlation, including fractal statistics (Emanuel 
et al. 1989; Lenormand 1989; Lenormand et al. 1990; Lenormand, Touboul & 
Zarcone 1988), have been extensively explored, although several questions still 
remain unanswered (Yortsos 1990). The practical ramifications regarding oil 
recovery, as well as many other industrial processes in porous media, have served as 
the primary driving force for most of these investigations. 

By contrast, little attention has been paid to the motion of lateral fluid interfaces, 
which are parallel to the main flow direction. Parallel flow is an often encountered, 
although much overlooked regime. I n  the context of Hele-Shaw displacement, it is 
the theoretical limit of fully developed fingers (e.g. the Saffman-Taylor ( 1958) finger) 
(see figure 1) .  Parallel flow conditions have been invoked in qualitative support of the 
scaling properties of unstable non-capillary displacement in porous media. 
Concerning the latter, it has been shown (King & Sher 1990; Lee, Coniglio & Stanley 
1990) that as long as the viscosity ratio M is finite, the initially fractal displacing fluid 

t To whom correspondence should be addressed. 



422 M .  Zeybek and Y.  C .  Yortsos 

cluster eventually evolves into a compact Euclidean object (although its perimeter 
may be a self-affine fractal (King & Sher 1990; King 1987; Lee et al. 1990)). In a 
different context, parallel flow is often realized in thin and long reservoirs, typically 
masked under the assumption of vertical flow equilibrium (Coats, Dempsey & 
Anderson 1971 ; Yokayama & Lake 1981 ; Zapata & Lake 1981). Recent studies on 
viscous fingering in porous media have invoked parallel flow to develop approximate 
models that satisfy numerical experiments (Fayers 1988 ; Fayers & Newley 1988). 
Finally, we mention that parallel flow is routinely encountered in yet other contexts, 
for example the steady-state, concurrent flow in relative permeability measurements 
(Collins 1967), as well as in processes involving counter-current imbibition 
(Kalaydjian & Legait 1987). Although not directly relevant to this work, the pore- 
level analysis of such flows is very incomplete a t  present, despite recent advances in 
the understanding of viscous coupling between phases (Aul & Olbricht 1990) and 
efforts to ascribe a viscosity ratio dependence on steady-state relative permeabilities 
(Rothman 1990). 

It is well known that, under the typical conditions of low Re = pqb/,u (where b 
denotes cell spacing), the flow of a single phase in Hele-Shaw cells and porous media 
(and more generally, multi-phase, multi-component flow, but in the absence of 
spatial and concentration gradients) is potential. Such purely viscous flow exists on 
either side of the interface between immiscible fluids in a Hele-Shaw cell (figure l ) ,  
and sufficiently far from the interface region in the case of porous media. We recall 
that potential flow (although in the opposite, inviscid limit) also governs the fluid 
flow in water waves (Lighthill 1987). We surmise that the dynamics of the lateral 
interfaces in parallel flow are likely to be related to those of shallow water waves 
(Hammack, Scheffner & Segur 1989). 

It is with this idea in mind that we examine the dynamics of fluid interfaces in 
parallel flow in Hele-Shaw cells. In particular, the possibility of sustained wave 
propagation and the existence of solitons form the main subject of this paper. We 
present both theoretical and experimental evidence that, subject to certain 
conditions, supports the existence of dispersive waves in the parallel flow of two 
immiscible fluids. In  the theoretical part, we first proceed with a linear analysis, 
which shows that small disturbances are dispersive, if the viscosity ratio M is not 
unity and the spacing of the ‘inner’ fluid does not correspond to the Saffman-Taylor 
finger configuration. Subsequently, a weakly nonlinear analysis is presented for long- 
wave, small-amplitude disturbances. The asymptotic description of the general 
problem is ultimately formulated in terms of a set of KdV and Airy equations. The 
solution of the former is obtained numerically, although analytical results are also 
used for comparison purposes. A brief summary of this work was given in Zeybek & 
Yortsos (1991). This paper presents a more detailed account, as well as the extension 
to the more general (non-symmetric) case. 

We must point out that although there are many similarities with shallow water 
waves, there are also many differences. First, the use of two immiscible liquids in a 
Hele-Shaw cell invariably raises issues of wettability and capillarity. The latter acts 
to dissipate high-frequency waves, while under certain conditions the former may 
completely dominate the process. Such issues do not arise in shallow water waves, 
where it is viscous dissipation that results in an amplitude decrease. Secondly, for flat 
steady-state interfaces to develop between the two immiscible fluids, a parallel flow 
condition (q,,u, = qa,uLb) a t  high values of the modified capillary number, If:*, must 
be first met. This requires a somewhat elaborate experimental procedure. Finally, 
solitary waves in shallow water wave experiments are typically detected by special 
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probes owing to their very small amplitude. Hele-Shaws cells make difficult the use 
of such probes. Therefore, the experiments were restricted to simple flow 
visualization. 

To test the theoretical predictions, several experiments were conducted. First, we 
considered a configuration of two fluids separated by one interface. For reasons that 
will become apparent, we refer to this as the symmetric case. This configuration 
allows us to test and improve our experimental technique, and also to compare with 
well-known analytical results. After satisfactory results were obtained, experiments 
were carried out for the non-symmetric case, where two interfaces are involved. In 
all experiments, we attempted to generate single solitons on both interfaces as well 
as to seek the interaction of solitons. Compared to frontal displacement in Hele-Shaw 
experiments, the experiments are well reproduced. Flat interfaces are readily 
recovered, after the disturbance leaves the cell, and experimental runs can be easily 
reproduced. We should point out that in our experiments, the viscosity ratio was 
finite, contrary to most Hele-Shaw experiments reported in the literature, which are 
carried out a t  large viscosity ratio. 

2. Theory 
We examine the lateral interfaces between two immiscible and incompressible 

fluids of different viscosities in the parallel Hele-Shaw flow shown schematically in 
figure 1. The cell is horizontal and has half-width W. Parallel flow requires flat 
interfaces and the absence of pressure gradients in the transverse ( Y )  direction. This 
condition is satisfied by the requirement p b  qb = pa qa = Q ,  where pi denotes viscosity 
and p i  the flow velocity of fluid i .  Under the above, steady-state interfaces are flat. 
We denote the normalized interface positions by A, and A, ( -  1 < A, < A, < l) ,  where 
transverse lengths are scaled with the half-width W. The basic governing equations 
follow from the usual Hele-Shaw assumptions. In each fluid, Darcy’s law applies and 
the pressure satisfies the Laplace equation 

V 2 P , = O = - V 2 @ i = O ;  i = a , b .  (1) 

Here, subscript a denotes the ‘inner’ fluid. Note that fluid b flows in two different, 
separated regions, thus two different pressures are needed for a full description. We 
describe the interfaces in dimensional notation by 

F i ( X ,  Y ,  T )  = y-qx, T )  = 0;  i = 1 ,2 .  (2) 

On each interface, the usual kinematic conditions apply, that fluid velocities normal 
to the interfaces are equal to each other and to the normal velocity of the interface 
itself 

U,-n, = Uaqni; i = 1,2,  (3) 

i = 1 ,2 ,  FiT . 
IV9J ’ 

Ua-n, = -- (4) 

where nB = V s B / l V 9 , 1  is the normal vector. With the use of Darcy’s law the above 
transform into 

V P b - V 9 i  =MQPa.VF,;  i = 1 ,2 ,  ( 5 )  

i = 1 ,2 .  
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Y = A,+% 

y = - 1  
q b .  P b  

- P. 
y = o  

FIGURE 1. Flow geometry for (a) non-symmetric and (6) symmetric case. 

Finally, across each interface the pressure drop is due to curvature, thus 

where y is the interfacial tension. Since the present interest is in long waves, higher- 
order corrections to  pressure drop are of secondary importance. We point out briefly 
that this problem is different than the two problems studied by Park & Homsy (1984) 
for frontal displacement and by Burgess &, Foster (1990) for flow at the side of a Hele- 
Shaw bubble, where capillarity dominates the leading-order approximations in the 
thin dimension. The present case requires a novel formulation, which is not 
considered here. 

2.1. Linear analysis 
The dynamics of flat interfaces parallel to the flow direction is next obtained by 
following an analysis in terms of normal modes. As a preliminary step, we investigate 
one interface only, corresponding to the symmetric problem A,  = - A 2 ,  vl  = -vz, 
where 7, and v2  describe the dimensionless disturbances of the two interfaces (see 
figure 1 b ) .  Using lower-case letters to  denote dimensionless quantities, the 
dimensionless base interface is a t  location 

L = A,, 
while the base pressure satisfies 

(9 ) 
- p .  = -X' , i = a , b .  

Here, we have scaled pressure by qapa L l k ,  where k = t b '  is the permeability of the 
Hele-Shaw cell, L is a streamwise length and time is scaled by Llq,. The pressure and 
the interface are next perturbed as follows : 

g%(y) ; i = a ,  b, (10) 

(11) 

After linearization and use of no-flow boundary conditions a t  y = 1 and y = 0 ,  the 
following results for the potential disturbances are obtained : 

p .  = j - ~ . + ~ '  = -II:+Eei(ut-kx) 
a a  

f ,  = fl +Be ei(ul-kz), 

$* = K ,  cash ( k ( y -  1)) ; A ,  < y < 1,  
$a=K2cosh(ky);  O < y < A , .  
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Substitution into the interface conditions yields, after some algebra, the following 
result for the complex frequency w :  

k sinh k 
(1 +M) sinh k+ (1 -M) sinh k(1 -2A,) 

w = 2  

(12) 
i 2k3 sinh (kh,) sinh (k( 1 -Al)) +- 

6Nia (1 + M )  sinh k + (1 - M )  sinh (k( 1 - 2A,)) ‘ 

Here, M = ,+,/pa is defined as the ratio of the viscosity of the outer fluid b, to the 
viscosity of the inner fluid a (figure 1). We note that in the above relation, capillarity 
first enters a t  O ( k 4 ) .  Hence, for long waves (small k) and for a sufficiently large value 
of the modified capillary number, N;, = qa,uaL2/yb2 (Homsy 1987), capillarity can be 
neglected, although it should be cautioned that three-dimensional effects may 
become important when the capillary number is too large (Maxworthy 1989). Under 
these conditions, the frequency is strictly real and the long-wave speed c = w / k  can 
be expanded as 

(M-  1) h1(l-2A,) (1 -A1) +. . . I ,  
1 -Al +AIM 

where co = 1/(1 -A,+A,M). For M + 1, the above relation predicts dispersive waves 
(Ablowitz & Segur 1981), i.e. waves with different wavelength travel with different 
speed. This result is quite different from the linear stability relations of frontal 
displacement, which yield either constant growth (viscous fingering) or constant 
decay. The existence of oscillatory modes in Hele-Shaw displacements was first 
reported in Yortsos & Zeybek (1989) and it is also in agreement with recent remarks 
by Xu (1991) and by Meiburg (1991). As expected, the waves become non-dispersive 
when the fluids have equal viscosity (M = 1). Interestingly, non-dispersive waves are 
also predicted for the Saffman-Taylor conditions (A ,  = $), although the latter have 
infinitesimal velocity when M + 1. 

An analysis similar to the above gives the dispersion relation for the non- 
symmetric case, where now two interfaces are involved (figure 1 a).  As expected, the 
dispersion relation is substantially more complicated. The final result is 

tanh (k( 1 - A,)) [e-”laD + ekA1aE] - aMe-kAID - b e-””D + b ekAIE + aMekAIE = 0, 
(14) 

where D = ekAz[(d-b)sinh(k(l +A,))-Mdcosh(k(l+A,))], 

E = e-”z[(b-d) sinh ( k ( l  +A,))-Md cosh (a(1 +A,)) ] ,  

a = i[l-w/k], b = i[l-MI, d = i[l-(w/k)Ml. 

For our purposes, we shall consider only the asymptotic expansion a t  small 
wavenumbers, by taking c = xo + x1 k + x2 k2 + . . . . Two solutions arise : 

c ,  = x 0 , , + x 2 , , ,  k2+.  . . ; m = 1,2, 
where 

4 (M-  1) (A, - 1,) (1 + h, -A,) [(A, + 1 ) 2  + (1, - 1 ) 2  + (h, + 1) (h, - l)] 
3 A2 (2+ 1, - h,) 
-~ 

5 2 , 2  = 



426 M .  Zeybek and Y .  G .  Yortsos 

and where we have defined A E 2 + ( M -  1 )  (A,  - A z ) .  The two roots correspond to the 
two different amplitude equations for the two interfaces. As in the symmetric case, 
the waves are dispersive as long as M =!= 1. 

2.2 .  Weakly nonlinear analysis 

The linear analysis is limited to the description of the onset of motion. The 
subsequent dynamics can be obtained by a nonlinear analysis that includes higher- 
order effects. I n  this section, the evolution of these dispersive waves is investigated. 

We shall apply a perturbation analysis similar to  that used for shallow water 
waves, valid for small amplitudes and long wavelengths. We consider the initial 
value formulation as described in Kevorkian & Cole (1980). First, two key 
dimensionless parameters are defined : 6 = W / L ,  where L is the initial length of the 
disturbance, and 6 = A / W ,  where A is a measure of the initial disturbance amplitude. 
In  this notation, the Laplace equation in each flow region is 

62$ixx+$iyy = 0 ;  i = a ,  1 , 2 .  (16) 

In  the above, we have used subscripts 1 and 2 to denote the velocity potential of fluid 
b in the upper and lower regions, respectively. Correspondingly, the interface 
positions are a t  yi = hi +v i  (i = 1,2).  The interface conditions now read 

62($ix-')T1x-$iy=S2M($ax-1)vix-M$ay; i = 1,2, (17) 

S 2 ( ~ i t - ~ i x ( $ a x - 1 ) )  = - $ a , ;  i = 192, (18) 

and in the absence of surface tension 

= q 5 i ;  i = 1 , 2 .  

The problem is fully specified with the no-flow boundary conditions a t  the sidewalls 

- _  "2-0 a t  y = - 1 ,  
aY 

a sufficiently fast far-field decay of the disturbances 

v i + O  a t  IxJ+co, 
and the initial condition 

T i ( X ,  0) = sh,(x).  

To implement an asymptotic approach, a long-wave, long-time and small-amplitude 
approximation is considered, 6 4 1, f =  et,e 4 1. Then, the following asymptotic 
expansions are taken : 

di  = e$io+&32q5i,+~P$i2+...; i = 1>2,  

T i  = qio + + . . . ; i = 1,2,  

where the various terms of the expansion also depend on f, e.g. T i  = ql(x, t ,  f). For non- 
trivial results to be obtained, the relation 6 = KC; is necessary, as can be readily 
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shown with the method of dominant balance (Kevorkian & Cole 1980). Use of this in 
(19)-(20) and substitution into the field equations and in the interfaces conditions 
(17)-(18) yield the following results. At  the zeroth order 

' lo , t+A. ' lo,z  = 0, 
where the matrix 

M+1-(M-1)A2 (M-1)(A1-l) 

- ( 1  +A2) (M-  1)  M +  1 + ( M -  1) A, 
MA MA 

MA MA 

has eigenvalues 2/A and 1/M. This system is 
variable 

uo = -L.' lo 

where L =  

-I 

diagonalized if we introduce the 

(22) 

1 - A 1  

The components of uo = [vlo, vzolT can be expressed in terms of yco : 

710 - 7 2 0  
Vl0 = u = 

2-A1+A2' 

2-hl+A2 
v20 E v = - (1  +A,) 710 + (1 -4) 720 (23) 

It follows that variable U is proportional to the net transverse displacement of fluid 
a.  From (21) and (22) we obtain 

qi,,+D.~,,z = 0, (24) 

where 

The solution of the initial value problem (24) is 

v10 = f o b ,  t", 
v20 = go(E, t", 

where the two moving coordinates u = x-2t/A, 6 = x-t/M, were introduced, and 

and f, the next order in the expansion is 

(27) 

f o ( g ,  0) = hl(O), so(E9 0) = h 2 W  
To obtain the dependence on 6, 

considered. After considerable algebra, one finds 

where 
'll. t + A  '11.2 = -'lo, i+ c. [TlO 710.2, 720 720, ZIT + (710 7ro)s d-  K2%m 

- (1  + A2)  (M- 1 )  - (M+ 1 +Al(M- 1)) I ' 1 - ( M -  1)  A, - (M-  1) (A1- 1) 
C =  

(M-  1) (M-  1) ( A ,  + A 2 )  -w 
d = - [  MA2 (M-l)(Al+A2)+2M 1 ' 
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and the vector e is a complicated expression involving $o, q o , .  . . and their spatial 
derivatives (Zeybek 1991). Equivalently, we may use transform (22) to obtain 

Vl,,+D. U1.z  = - V 0 , f - L .  c. [%o %o,z ,  r 2 0 r 2 0 , 5 1  T -(910720 ) z L.d+K2L-e,,. (28) 

Use of (23)-(26) into (28) leads after considerable algebra to  

and 

After integration of (29) with respect to E ,  all secular terms vanish if the terms 
containing vlo also vanish, thus (U = wl0) 

Similarly working for the other component in (30) and eliminating secular terms 
yields 

assuming sufficiently fast decay to zero. The two coefficients in (31) and (32) are given 
by 

4M (A, -A1)( l  +h,-A,)[(A,+ 1)2+ (A1- 1)2+ (A,+ 1) (A,- l)]  
(2  + A 2  - 4) 

(1 -Al)(Al-A2)(1 + & ) A  
M(2 +A,  - A J  

a,, = - 
3A , 

a 2 2  = 

and they are related to x2, and x2,2 by aii = MAx,J(M- 1) (i = 1,2). The various 
parameters in (31)-(32) are functions of the undisturbed interface positions A,, A,, 
and the mobility ratio M .  For the full problem, the solution of both (31) and (32) is 
required. Note the following : (i) purely translational motion occurs when M = 1, as 
expected; (ii) there are two long-wave speeds, 2/A and 1 / M ,  both decreasing to zero 
as the viscosity ratio increases. The long-wave speed 1/M corresponding to variable 
V is simply the dimensionless (undisturbed) velocity of fluid b ; (iii) as anticipated, the 
linearized equations yield the leading order of the linear analysis ; (iv) the dispersive 
term in the KdV equation vanishes when 1 + A 2  - A, = 0 (which, for the symmetric case 
A, = - A 2 ,  coincides with the Saffman-Taylor finger width A, = t ) ;  (v) antisymmetric 
disturbances (yl = q2) are governed by the Airy equation (32) alone; (vi) finally, 
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y = I  

y = h+r] 

y = o  

Low viscosity 
q b , p b  -- Soliton direction 

qa, Pa + High viscosity 

FIGURE 2. Counterflow of the two fluids in a moving frame of reference. 

when both initial and disturbed interfaces are symmetric (A, = -A2 and q, = - q2) ,  the 
interface motion is governed by the KdV equation alone. The latter is of great 
interest for the subsequent experiments. This case may be recast in terms of the 
original variables as follows ( A  = A,) : 

qt +c, 7,-2(M- 1) c ; q q z + & c ; K 2 ( M -  1)  A( 1 - 2 4  (1  - A )  qzzx = 0. (33) 

Equation (33) can be interpreted as follows. Owing to parallel flow, any initial 
disturbance travels with a long wave speed c,. The latter always lies between the velo- 
cities of the two fluids (e.g. 1 < c, < 1/M for M < 1).  For an observer travelling with 
speed c, the fluid flow is counter-current, the lower-viscosity fluid flowing towards the 
right and the higher-viscosity fluid towards the left in the schematic of figure 2 (where 
one must recall that in the Hele-Shaw context, viscous shear is not relevant to long 
waves). Because of unequal viscosities, the long-wave disturbances also disperse, to 
the left if (N-  1) (1  -2A) > 0, and to the right, otherwise. We note that shorter- 
wavelength dispersion, although possible, is likely to be damped by capillarity and 
wettability effects. Sustained wave propagation is possible only if amplitudes are 
small and the nonlinearity is weak. Strong nonlinear effects must be excluded. They 
violate parallel flow conditions and are likely to lead to frontal motion and viscous 
fingering. Nonetheless, weakly nonlinear waves also tend to break, to the left if 
(M-  1) q > 0, and to the right, otherwise. For the positive disturbance of figure 2, 
dispersion will oppose breaking if 1 -2A < 0. Under this condition, a permanent- 
form wave would develop, that propagates to the left or to the right, depending on 
whether M > 1 or M < 1, respectively. Analogous conclusions can be drawn for all 
other possibilities. 

In the symmetric case we may use classical results (Drazin & Johnson 1989) to 
predict in advance the possibility of solitary waves, in terms of M ,  the interface 
position A, and the initial shape of the disturbance. With the use of the rescaling 

equation (33) can be mapped into the standard form 

Ut  - ~ U U ,  + u,,, = 0 
with initial condition 

u(z, 0) = -u,sech2 ( b ( z - x , ) ) .  

(34) 

Then, the theory predicts the following. (i) When A, > 0.5, M < 1, q > 0, and 
A, < 0.5, M > 1 ,  7 < 0, solitons develop and propagate in the positive u-direct,ion. 
(ii) When A, > 0.5, M > 1, q > 0, and A, < 0.5, M < 1, q < 0, solitons propagate in 
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FIGURE 3. M ws. A, diagram for formation of solitons (S). 

the negative a-direction. (iii) No solitons would form in any other case. Based on 
the above, the phase diagram of figure 3 can be constructed. Both the existence of 
solitons and their direction of propagation, in a frame of reference moving with speed 
2/A, are shown. The map will be repeatedly used below in the comparison between 
experiment and theory. 

2.3. Numerical method 

Although we shall often use general exact results, we shall rely for illustration 
purposes on numerical results, obtained with the pseudospectral technique of 
Fornberg & Whitham (1978). The method combines a Fourier transform treatment 
of the space dependence with a leapfrog scheme for the time evolution and i t  is well 
suited for nonlinear dispersive waves. The interval 1 is discretized into N equidistant 
points, with spacing Ax = Z/N (N was taken as 128, 256 or 512). The function ~ ( x ,  t)  
is discrete Fourier-transformed with respect to x by the use of a fast Fourier 
transform algorithm. Thus (33) is discretized as follows : 

q?+l- 7F-l = - SiAtc, F + 2i(2(M - 1) c t )  (7:) A t F  

-2i(+x2c3 (M- 1) h(1-2h) (1 - A )  P l [ s i n ( ( $ y  n3At)9r(~)]. (35) 

The numerical scheme was tested favourably with an exact soliton solution, as well 
as with the test example of Zabusky & Kruskal (1965). A similar discretization was 
implemented for the Airy equation. 

In  the experiments that follow, the existence of solitons was tested by direct 
comparison with simulation, but also by looking for the following key properties 
(Drazin & Johnson 1989) : (i) arbitrary initial disturbances evolve into one or more 
solitons and into dispersive waves of substantially smaller amplitude ; (ii) the speed 
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of a soliton depends on its amplitude, which increases with an increase in amplitude ; 
(iii) solitons regain their identity after interaction with other solitons. For a given 
initial condition, the number of solitons and their amplitude can be predicted from 
the standard theory of the KdV equation (Drazin & Johnson 1989; Whitham 1974). 
For example, the number of solitons obeys the condition 

while the soliton amplitude is 
a, = 2 ~ % ,  

where 

These were used in the subsequent comparison with the experiments. 

3. Experimental 
As in shallow water wave experiments, the two small parameters 6 and B play a 

critical role. The conditions 6, IS -4 1 suggest that a satisfactory resolution (larger A )  
requires larger cell width, which in turn requires proportionally larger length. 
Therefore, the construction of a narrow and long Hele-Shaw cell was necessary in 
order to observe possible solitary waves (Maxworthy 1987 ; Park, Gore11 & Homsy 
1984; Saffman & Taylor 1958; Tabeling, Zocchi & Libchaber 1987). The cell consisted 
of two Plexiglas plates, 4 in. thick, of dimensions 230 x 27 cm, and of a rubber gasket 
spacer 0.08 cm thick. Since interferometric methods (Tabeling et al. 1987) were not 
available, the uniformity of the gap was estimated by the indirect method of Park 
et al. (1984). The linear regression coefficient of the data was 0.999, indicating a good 
uniformity of the cell. The plates were held together using C-clamps. The 
experimental set-up consists of the Hele-Shaw cell in a horizontal position, three 
integral variable-speed peristaltic pumps, a video camera, a video recorder and a 
monitor (see figure 4). The frame of the cell was constructed such that it could be 
tilted with respect to both the transverse and the longitudinal axes. This was 
necessary in order to establish the steady-state interfaces. 

Experiments reported below were conducted with two different fluid pairs. The 
first pair is mineral oil and glyceroljwater solution with corresponding viscosities 
170 CP and 860 cP, while the second pair is DC 200 silicon fluid and glycerol/water 
solution with corresponding viscosities 1060 CP and 500 cP. Mineral oil is the 
wetting fluid in the first pair, while DC 200 silicone fluid is the wetting fluid in the 
second pair. The viscosities of the fluids were measured by both a Cannon-Fenske 
and a Brookfield spindle viscometer. Since the parallel flow condition is one on fluid 
viscosities (qa,ua = qb,ub), the accuracy of these measurements plays an important 
role in establishing the flat interface. Relatively high flow rates were used, such that 
the modified capillary number was typically O( 10,). No sustained wave propagation 
was observed for substantially lower N:, values. This is consistent with the theory. 
The experiments were conducted with configurations involving both one and two 
interfaces. The single-interface case corresponds to the symmetric case (A, = -A,, 
7, = - 7,). This configuration can be viewed either as the top or the bottom half of the 
symmetric problem. It can be easily checked that the solution of (33) is invariant to 
the change A, --f 1 +A,, 7, + q,, M-+ 1/M (please note also the rescaling of time), thus 
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without loss we may view the flow as the top half of a symmetric problem with the 
‘lower ’ fluid being fluid a. In our experiments, this was the more viscous fluid for the 
case M = 0.2 and the less viscous fluid for the case M = 2.1. 

Conducting the flow experiments consists of two stages. The first stage is to 
establish a flat lateral fluid interface and parallel flow conditions for the two fluids. 
For the single-interface case, this is accomplished by a displacement process with the 
aid of gravity. The cell is first filled with one fluid. While the cell is tilted on its side, 
the lighter fluid is slowly injected at the top. Subsequently, the cell is slowly returned 
to horizontal position. The parameter A, which is the dimensionless location of the 
interface, is controlled by the relative amounts of fluids injected. For the non- 
symmetric case, flat interfaces are established by the simultaneous injection of both 
fluids, while the cell is slightly tilted on the transverse axis. We were unable to 
independently vary the locations of both top (A,)  and bottom (A,) interfaces, which 
shifted together according to the amounts of the fluids injected. We stress that in the 
two-interface problem, the parallel flow condition, ,ub qb = pa qa, was found essential 
for the establishment of a parallel interface. Under conditions such that the modified 
capillary number is relatively large, flat interfaces were obtained with an accuracy 
of )1 mm. 

The second stage is to introduce a disturbance as an initial condition, typically 
obtained by interrupting momentarily the flow of one fluid, and to monitor the 
motion of the disturbance. The wavelength and amplitude of the disturbances were 
controlled by the speed of the interruption. Although results obtained with such 
initial conditions were generally satisfactory, questions may arise as to the effect of 
flow interruption and end effects. This will be discussed in a later section. 

4. Results and discussion 
4.1. Symmetric case 

Three different cases were considered corresponding t o  three different viscosity ratio 
regimes (M < l , M  - l , M  > 1). 

4.1.1. M < 1 

Here, the first pair of fluids (mineral oil and water/glycerol solution) was used with 
M = 0.2. Figure 5 shows typical experimental results in digitized pictures taken from 
a videotape. A hump-like initial disturbance taken to satisfy the small-amplitude 
and long-wave conditions was imposed on the parallel interface ( A  = 0.69) (figure 
5a). The cell width here is 6 em. For the particular initial conditions of wavelength 
L = 20 cm, and amplitude 1 em, the theory predicts a single soliton travelling 
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FIGURE 5. Single solitary wave: (a) initial condition, (b ,  c)  subsequent stages. 

forward ( A  > $,M < 1 ,  ?,I > 0) (see figure 3). Indeed, upon restoration of the flow rate 
to  the initial level, the disturbance was advected by the flow, and it started 
developing into a wave of constant shape followed by a wiggly interface of small 
amplitude and short wavelength behind it. Typically, this constant-amplitude wave 
has taken a permanent form after travelling about 45 cm, and appeared to  possess all 
the characteristics of a soliton (figure 5 b ) .  The amplitude is clearly different from the 
initial one and remains constant for a substantial distance travelled (figure 5 c ) ,  as 
long as 150 cm, beyond which end effects seem to become appreciable. Numerical 
simulations corresponding to these conditions and for the initial shape of figure 5 ( a )  
are shown in figure 6. 

The comparison between theory and experiment shows a quite satisfactory 
agreement, despite the ambiguity on the suitability of the initial condition for the 
experiment (recall that  the disturbance is imposed by flow interruption). The 
theoretical and experimental number of solitons coincide (equal to l),  while 
computed and observed final amplitudes were 0.81 em and 0.76 cm, respectively. The 
wave velocity with respect to a fixed observer was calculated to be 0.28 cm/s, which 
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FIGURE 7. Two solitary waves at  two different stages. 

compares well with the experimental value of 0.26 cm/s. Owing to the particular 
scales selected to match one-to-one the experimental pictures, certain typical 
characteristic features of soliton and dispersive waves are suppressed in figure 6. To 
illustrate this point, the profile of figure 6 is replotted in the inset with different 
scales. Nonetheless, motion of dispersive waves was actually not observed to our 
satisfaction in the experiments. Typically, a noisy and wiggly interface of small 
wavelength and amplitude formed soon after the main wave evolved. However, we 
suspect that wettability and surface tension have likely played major roles on its 
subsequent development. 

Figure 7 shows the emergence of two solitons arising from an initial disturbance of 
longer wavelength (L - 45 cm). According to the theoretical predictions, two solitary 
waves of different amplitudes (and speed) should arise, in order of descending 
amplitudes (figure 7) .  As time progresses, the two solitons are clearly separated, the 
higher-amplitude soliton moving faster and away from the trailing lower-amplitude 
soliton. Figure 7 ( b )  is a picture of the trailing wave. A typical characteristic of the 
emergence of more than one soliton is an increase in the amplitude after the onset of 
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FIQURE 8. Numerical simulation of figure 7. Inset : profile in different scales. 

FIQURE 9. Two solitary waves, (a) before and ( b )  after interaction. 

the initial disturbance. This feature was clearly observed. Comparison with the 
numerical simulations is again quite satisfactory (see figure 8 and the inset with 
diflerent scales). 

Under the same conditions, soliton interaction is shown in figure 9. To create the 
two solitary waves, two disturbances of different amplitude were sequentially 
introduced. The second disturbance is of higher initial amplitude and evolves into a 
faster soliton that eventually takes over the preceding slower one. After this 
nonlinear interaction, tall and short solitons reappear, but in reverse order and 
propagate with their original speed (figure 9b). All these features are consistent with 
the theory. Corresponding numerical simulations are in good agreement as shown in 
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FIGURE 11. (a )  Short-wave initial disturbance and ( b )  subsequent stage. 

figure 10. Some additional effects were also considered. For instance, short-wave 
disturbances, typically corresponding to 6 2 0.5, were found to dissipate after their 
onset, as predicted by the theory. Figure 11 shows such a short-wave disturbance and 
its subsequent stage, where the amplitude has significantly decreased over a rather 
short distance. Numerical simulations are also in agreement. 

For disturbances in the opposite negative direction (7 < 0) ,  no solitons are 
predicted by the theory (compare figure 3). This prediction was tested in the 
experiments. Consistent with the theory, any such disturbances (whether of long or 
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FIGURE 12. Experiment with A < a and positive initial disturbance. 

short wavelength) dissipated continuously, although it is quite likely that wettability 
may have also interfered with the interface dynamics in this case (see below). 
Similarly, for 0 < A < 4, but with a positive initial disturbance, no solitons are 
theoretically predicted. A typical experimental run for such conditions ( A  = 0.3) is 
shown in figure 12. The corresponding simulation result was also in good agreement 
with the experiment. Finally, when 0 < A < 4, and the initial disturbance is negative, 
solitons are predicted to propagate in the negative a-direction (figure 3). 
Unfortunately, this disturbance could not be introduced clearly and solitons were 
not observed, although dispersive-like waves travelling ahead of the main 
disturbance were noticed and the advective velocity agreed with the theory to some 
degree. We believe that the reason for this discrepancy is wettability. Indeed, soliton 
propagation in the negative a-direction (which is equivalent to this case) was 
observed when we experimented with a different pair of fluids of different viscosity 
ratio (M > l) ,  but with reverse wettability. 

4.1.2. M -  1 
The second region of interest in figure 3 corresponds to equal-viscosity fluids. 

Experiments were carried out with a pair of mineral oil and water/glycerol solution 
of nearly equal viscosity (M = 0.97). In  this case, both the nonlinear and the 
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FIGURE 13. The non-symmetric case: single soliton at two different stages. 

dispersive terms in the KdV equation (33) are very small, hence we expect constant 
wave speed and translational motion independent of the wave amplitude. In the 
experiments, disturbances similar to figure 5 were introduced. However, neither a 
change in shape nor a wiggly interface were observed. The disturbance simply 
propagated with a constant speed, equal to the fluid velocities (Zeybek 1991). As a 
second test, two disturbances with different amplitudes were sequentially introduced, 
in a way analogous to the soliton interaction case discussed above. It was observed 
that the distance between the two disturbances remained constant and that no 
further interaction occurred. This behaviour is fully consistent with the theory. 

4.1.3. M >  1 
Finally, for completeness, we also considered the case with M > 1.  As pointed out 

above, this case is symmetric to M < 1, thus results identical to the previous should 
be obtained under the appropriate conditions. The condition M >  1 required a 
different pair of fluids; however, the wettability was not altered (the top fluid was 
still wetting the surface). We used DC 200 silicon fluid and glycerol/water solution 
with M = 2.1. Solitons are predicted to move to the left on the cr-axis for M > 1, 
h > t and 7 > 0 (figure 3). 

The first experiment was to generate a single soliton. As in the previous case, it was 
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satisfactory (Zeybek 1991). Interaction of solitons was sought in a subsequent 
experiment. Contrary to the case M < 1 ,  we first introduced the higher-amplitude 
disturbance, which evolves into a higher-amplitude soliton, to be followed by the 
lower-amplitude disturbance, which evolves into a lower-amplitude soliton. 
According to the theory, for a fixed observer, the lower-amplitude soliton travels 
faster and eventually overtakes the higher-amplitude soliton. This was clearly 
observed. Because of limitations on the length of the cell, however, complete 
reappearance of the lower-amplitude soliton after the interaction was not possible. 
As before, the experimental run and the corresponding numerical simulation were in 
good agreement (Zeybek 1991). 

4.2. Non-symmetric case 
Although the experiments in the symmetric case appear to support the theory, we 
also experimented with the non-symmetric configurations. Two different channel 
widths (2W = 9 and 12 cm) were used. As in the first set ofexperiments, the pair of 
fluids consisted of mineral oil (outer fluid) and glycerol/water solution (inner fluid). 
The flat lateral interfaces were established by the simultaneous injection of the two 
fluids. 

In  the experiments below, we used A, = 0.65 and A, = -0.76. Two disturbances, 
of initial amplitude 1.2 and -0.75 cm, respectively, were simultaneously generated 
on each interface. Figure 13 shows the solitary waves that developed on each 
interface. The two waves retained their shapes even after they have travelled a 
distance of about 140 cm. Wiggly interfaces suggesting dispersive waves were 
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observed in the back of the waves. Figure 14 shows the corresponding numerical 
simulations. 

Interaction of solitons was also studied. Here, two different-amplitude dis- 
turbances were sequentially introduced on each interface. Numerical simulations 
confirmed the experimental findings. Other conditions were also tested for different 
values of A, and A,. I n  the non-symmetric case, the value of the parameter A,-A, is 
critical. When A,-& < 1 (interfaces are closer to each other), all other conditions 
remaining the same, the disturbances dissipated. For additional details, Zeybek 
(1991) should be consulted. Unfortunately, the experimental amplitudes were too 
small for satisfactory identification and comparison. Further work on this and 
related issues is currently underway. 

5. Concluding remarks 
The small-amplitude long-wave motion of lateral interfaces in parallel flow was 

investigated at large values of N&, in a long, horizontal Hele-Shaw cell. The 
asymptotic theory for the case of two fluids was formulated in terms of a set of KdV 
and Airy equations. The findings of the theory were validated by experiments 
involving both one (symmetric case) and two interfaces (non-symmetric case). Under 
the condition p b  qb = pa qa, flat interfaces pertaining to parallel flow were successfully 
established in each case. Experimental results supported, for the most part, the 
theoretical predictions including the existence of solitons. It is important to point out 
that this is the first time that Hele-Shaw (and, perhaps porous media) flows have 
been reported to contain KdV dynamics (although see also Kadanoff (1990) in a 
different context). However, some experimental aspects still remain unclear. 

Dispersive waves associated with solitons should appear in the experiments. These 
waves can be identified in the simulations, although only a t  a high resolution. 
However, they were not observed in the experiments. A wiggly shape did develop at 
the points where i t  was supposed to be present. This was observed in both forward 
and backward moving solitons. We believe that it is indeed the initial motion of the 
dispersive waves that initiates these noisy interfaces. However, the subsequent 
motion is largely controlled by surface tension and wettability effects which become 
important a t  small wavelengths. Significantly, no wiggly interface was observed in 
the experiments with equal-viscosity fluids (M - 1). 

Along the same lines, it was pointed out that the direction of the initial disturbance 
was critical to the development of wave motion. In  all cases, the experiments were 
successful when the initial disturbance was in the direction of drainage (non-wetting 
displacing wetting). The results of experiments were inconclusive when the 
disturbance was introduced in the opposite (imbibition) direction, when it was 
observed that the shape of disturbance was not as well defined as in the drainage 
case. We demonstrated this for the simplest case of equal viscosities, M - 1. Quite 
satisfactory results were obtained when the disturbance was positive (from non- 
wetting to wetting). Results much different than expected, and generally not in 
agreement with the theory, were obtained when the disturbance was in the opposite 
direction (from wetting to non-wetting fluid). Wettability and related effects are 
certainly in need of further investigation. 

Finally, in some cases the velocity of the frame of reference was quite large 
compared to  the soliton speed, thus we were not able to monitor the full extent of the 
wave motion. With the aid of gravity, this velocity of the frame of reference can be 
reduced to zero. However, now the flow directions must be opposite to  each other. 
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Such experiments are currently underway. Parallel theoretical developments 
involving waves in the presence of gravity in Hele-Shaw flows are reported in 
Meiburg (1991). 
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